skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nguyen, Q"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 14, 2026
  2. null (Ed.)
    Active search is a learning paradigm where we seek to identify as many members of a rare, valuable class as possible given a labeling budget. Previous work on active search has assumed access to a faithful (and expensive) oracle reporting experimental results. However, some settings offer access to cheaper surrogates such as computational simulation that may aid in the search. We propose a model of multifidelity active search, as well as a novel, computationally efficient policy for this setting that is motivated by state-of-the-art classical policies. Our policy is nonmyopic and budget aware, allowing for a dynamic tradeoff between exploration and exploitation. We evaluate the performance of our solution on real-world datasets and demonstrate significantly better performance than natural benchmarks. 
    more » « less
  3. null (Ed.)
    Photoswitches are molecules that undergo a reversible, structural isomerization after exposure to different wavelengths of light. The dynamic control offered by molecular photoswitches is favorable for applications in materials chemistry, photopharmacology, and catalysis. Ideal photoswitches absorb visible light and have long-lived metastable isomers. We used high throughput virtual screening to predict the absorption maxima (λmax) of the E-isomer and half-lives (t1/2) of the Z-isomer. However, computing the photophysical and kinetic properties of each entry of a virtual molecular library containing 103–106 entries with density functional theory is prohibitively time-consuming. We applied active search, a machine learning technique to intelligently search a chemical search space of 255991 photoswitches based on 29 known azoarenes and their derivatives. We iteratively trained the active search algorithm based on whether a candidate absorbed visible light (λmax > 450 nm). Active search was found to triple the discovery rate compared to random search. Further, we projected 1962 photoswitches to 2D using the Uniform Manifold Approximation and Projection (umap) algorithm and found that λmax depends on the core, which is tunable with substituents. We then incorporated a second stage of screening with to predict the stabilities of the Z-isomers for the top 1% of candidates. We identified four ideal photoswitches that concurrently satisfy λmax > 450 nm and t1/2 > 2 hours; the range of λmax and t1/2 range from 465 to 531 nm and hours to years, respectively. 
    more » « less
  4. null (Ed.)
  5. Ultrafine-grained and heterostructured materials are currently of high interest due to their superior mechanical and functional properties. Severe plastic deformation (SPD) is one of the most effective methods to produce such materials with unique microstructure-property relationships. In this review paper, after summarizing the recent progress in developing various SPD methods for processing bulk, surface and powder of materials, the main structural and microstructural features of SPD-processed materials are explained including lattice defects, grain boundaries and phase transformations. The properties and potential applications of SPD-processed materials are then reviewed in detail including tensile properties, creep, superplasticity, hydrogen embrittlement resistance, electrical conductivity, magnetic properties, optical properties, solar energy harvesting, photocatalysis, electrocatalysis, hydrolysis, hydrogen storage, hydrogen production, CO2 conversion, corrosion resistance and biocompatibility. It is shown that achieving such properties is not currently limited to pure metals and conventional metallic alloys, and a wide range of materials are processed by SPD, including high-entropy alloys, glasses, semiconductors, ceramics and polymers. It is particularly emphasized that SPD has moved from a simple metal processing tool to a powerful means for the discovery and synthesis of new superfunctional metallic and nonmetallic materials. The article ends by declaring that the borders of SPD have been extended from materials science and it has become an interdisciplinary tool to address scientific questions such as the mechanism of geological and astronomical phenomena and the origin of life. Keywords: Severe plastic deformation (SPD); Nanostructured materials; Ultrafine grained (UFG) materials; Gradient-structured materials, High-pressure torsion (HPT) 
    more » « less